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In previous work we have shown that the spectral function,r~kE!, must become strongly peaked at the band
edges in amorphous semiconductors such asa-Si:H. This fact can be used to construct an effective-mass
theorem and the simplest use of the theorem is made to study the effect of confinement ina-Si:H/a-SiNx :H
multilayers. We find that the effect of confinement on the density of states is negligible, in apparent disagree-
ment with optical absorption studies of Abeles and Tiedje. However, reanalyzing the absorption coefficient
recognizing that only thea-Si:H layers will absorb at the band edges we obtain excellent agreement with
experiment and extract parameters describing the electronic structure at the band edge.@S0163-1829~96!52120-
X#

The spectral function for electrons in an amorphous iso-
tropic solid,r~kE!, is the probability of finding an electron
with energyE if the modulus of the wave vector isk. It is
analogous to the complex dielectric function in optics,
namely, the imaginary partG I , describes the decay of a co-
herent wave and the real partGR gives the modification of
the dispersion relation when one solvesE5k21GR(kE) ~us-
ing atomic units!. The relationship is

r~kE!5
1

p

G I~kE!

@E2k22GR~kE!#21G I
2~kE!

~1!

and the electronic density of states is given by
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If G I is finite then the density of states is finite. IfG I is equal
to an infinitesimalj then r(kE)5d@E2k22GR(kE)#, and
to obtain a zero density of states as in the gap then there must
be no roots toE5k21GR(kE). The numerical calculations
of Hickey et al.1 on a small model ofa-Si show how this
occurs and are illustrated in Figs. 1~a! and 1~b!. Setting the
average potential to be zero,k2 andk21GR(kE) are plotted
for an energy~a! just below the band gap and~b! in the band
gap. The energy is shown as a horizontal line. Below the
band gap the intersection is on a steep part ofk21GR and
leads to a low density of states. Within the band gap a solu-
tion to E5k21GR is avoided by a singularity. When the
spectral function is plotted2 near the band edges a sharply
peaked spectral function is found with the peaks lying close
to the modulus of the free-electron Fermi vectorkF corre-
sponding to anE(k) relationship with a vertical slope but
where the area under the spectral function goes to zero at the
band edges. If

E5Ec1bc~kc2k!n, bc.0, ~k,kc! ~3!

and

E5Ev2bv~kv2k!m, bv.0, ~k,kv! ~4!

with 1.n.0 and 1.m.0 and whereEc andEv denote the
conduction- and valence-band edges, then these lead to an

infinite slope whenk5kv and a vanishing density of states.
In fact, we will taken5 1

2 andm51
2 in this paper, which leads

to a density of states proportional to (E2Ec), for example.
Choosingn5m52

3 would yield a density of states propor-
tional to (E2Ec)

1/2 as in crystalline semiconductors. We
cannot distinguish from computer simulations between these
two solutions but the main thrust of this paper would not be
altered. Let us now consider forms forGR(kE), which would
be consistent with that ‘‘observed’’ from the computer
simulations.2 Taking the valence band first, then the form

GR~kE!5Av
~k2kv!

~Ev2E!
, ~Av.0!, ~5!

whereEv5kv
2, has the property required, namely, the slope

as a function ofk approaches infinity. The value ofkv is
approximatelykF , the modulus of the free-electron wave
vector. If one solvesE5k21GR then the form~4! is ob-
tained. If we choose the form

GR~kE!5Ac

@k2kc~E!#
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whereEc5kc
2, then one obtains~3! if aAc,1. If aAc,1

then the order ofk andkc is reversed. The precise behavior is
not known but future refinements will not change the general
arguments, which are based on a mixture of theoretical facts
and evidence from numerical calculations.

Within the gap we require a self-energy that is singular.
The simplest form to take is

GR5
Eg
2
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1
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where Eg is the energy gap. If one now solvesE5k2

1GR(kR) for the real value ofE then there are two roots for
k2 corresponding to
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namely, thatk2 has imaginary parts within the gap just as in
a crystalline semiconductor even thoughG I is vanishingly
small. k0

2 is the energy at the center of the gap and again is
approximatelykF

2. If we setE5k0
26(Eg/2) then this estab-

lisheskv andkc to be

kv5S k022 Eg

4 D 1/2 ~9!

and

kc5S k021 Eg

4 D 1/2, ~10!

becausek2 must be real at the band edges. This then links~8!
smoothly to ~3! and ~4!. This is not quite consistant with
Ev5kv

2 andEc5kc
2 but this is easily taken care of by making

k0 to be slightly energy dependent, tending tokc andkv at
the band edges.

The next step in our argument is to recognize that if we
have a slowly varying potentialV(r ) and replacek2 by
2¹2 we can construct the following Schro¨dinger-type dif-
ferential equations by replacingE by @E2V~r!# for values of
k close tok0 , kv , andkc . When@E2V(r )# lies within the
gap ~8! becomes~using atomic units!

2¹2C5S E2V~r !1k0
2
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2 DC. ~11!

When @E2V(r )# lies just in the conduction band~3! be-
comes

bc
2

2kc
~kc

21¹2!C5@E2Ec2V~r !#2C, ~12!

and when@E2V(r )# lies in the valence band~4! becomes

1
bv
2

2kv
~kv

21¹2!C5@E2Ev2V~r !#2C. ~13!

Setting V50 yields ~3!, ~4!, and ~8! for k'k0'kc'kv .
Choosing the appropriate sign when taking square roots it
should be noted that it is important to retain the plus and
minus signs in~11! so that decaying exponential solutions
can be obtained using spherical coordinates. We would wish
to emphasize at this stage that the only uncertainty concerns
the precise values ofm andn in ~3! and ~4! not the general
physical argument.

We now turn to the measured optical absorption3 in
a-Si:H/a-SiNx :H multilayers where, as usual, we will as-
sume that the band offset is sufficient so that the states in a
singlea-Si:H layer can be regarded as completely confined.
Abeles and Tiedje3 showed that the optical absorption varied
with varying thickness of thea-Si:H layers from~8–40! Å,

FIG. 1. The behavior ofk21GR(kE) as a function ofk ~a! for
an energy~E! just outside the gap, and~b! for an energy within the
gap. The horizontal line denotes the energy and the solid curve is
the free-electron form~k2).

FIG. 2. The optical absorption as a function of energy on a
linear-log plot:~a! unscaled data and~b! scaled data for thin layers
and bulka-Si:H. The symbols denote points read from the original
data for the purpose of rescaling.
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which could be construed as stemming from variation in the
gap due to confinement as in crystalline multilayers. Indeed,
Abeles and Tiedje were able to fit their data using effective
masses for the valence and conduction bands but the values
used correspond to free-electron-like values. This has been a
long-standing problem but we will argue that at the band
edge ofa-Si:H it is only the states ofa-Si:H that are absorb-
ing the radiation becausea-SiN:H has a much larger band
gap. Accordingly, the measured absorption coefficient
should be scaled by a factor of@(L11L2)/L1#

2, whereL1
andL2 are the thickness of Si:H and SiN:H layers, respec-
tively. The reason for the square of (L11L2)/L1 is that the
absorption will be proportional to the volume fraction of
states in the conduction and valence band. In Fig. 2 we show
the scaled and unscaled data plotted on a log-linear scale,
and it can be seen that within the scatter resulting from trans-
ference of the original data there is no change in the gap with
thickness. If we return to Eqs.~3! and ~4! then the effect of

confinement on, say, the conduction band would be to gen-
erate bands in a layer of thicknessa in the z direction, such
that

Ec
n5Ec1F bc

2

2kc
H ~kc

22k↑
2!2S np

a D 2 J G1/2, ~14!

wheren is an integer andk↑
25kx

21ky
2. Choosing a reasonable

value ofbc , as will be discussed shortly, we find a negli-
gible effect on the band density of states even for the small-
est values ofa'8 Å, as the rescaled absorption coefficient
would suggest.

We now turn to the problem of analyzing the optical ab-
sorption at the band edge ina-Si:H. We achieve this by
assuming that the absorption is proportional to the joint den-
sity of states but we need an estimate of the matrix elements
for optical transitions from the valence to the conduction
band, which are treated as a constant termeda3Pav

2 by
Connell,4 wherea3 is the volume per atom. We estimate this
at about 3 eV from the absorption edge simply by comparing
the experimental value5 with that obtained from the joint
density of states as calculated by Holender and Morgan.6 We
obtain the value ofa3Pav

2 520.6 a.u. We then takebv5bc

and fit the absorption at the band edge usingEg as the other
fitting parameter. The results are shown in Fig. 3 on a linear-
linear plot. The agreement is clearly excellent with
bc5bv50.23 a.u. andEg51.55 eV. This value ofEg should
be compared with a value of 1.77 eV, which is usually
quoted, but of course the precise value depends on how it is
extracted from the experimental data and the precise form for
the density of states at the band edge. The cubic form for the
absorption coefficient at the edge results from the linear den-
sities of states in the conduction and valence bands.
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FIG. 3. The optical absorption as a function of energy on a
linear-linear plot for the experimental and fitted data ona-Si:H.
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