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Electron confinement ina-Si:H and an effective-mass theorem for amorphous semiconductors
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In previous work we have shown that the spectral functigkE), must become strongly peaked at the band
edges in amorphous semiconductors sucha-&:H. This fact can be used to construct an effective-mass
theorem and the simplest use of the theorem is made to study the effect of confineraeitHifa-SiN, :H
multilayers. We find that the effect of confinement on the density of states is negligible, in apparent disagree-
ment with optical absorption studies of Abeles and Tiedje. However, reanalyzing the absorption coefficient
recognizing that only the-Si:H layers will absorb at the band edges we obtain excellent agreement with
experiment and extract parameters describing the electronic structure at the barj@eti§a-18206)52120-

X]

The spectral function for electrons in an amorphous isoinfinite slope wherk=k, and a vanishing density of states.
tropic solid, p(kE), is the probability of finding an electron In fact, we will taken=3 andm=3 in this paper, which leads
with energyE if the modulus of the wave vector Is It is  to a density of states proportional t&{ E.), for example.
analogous to the complex dielectric function in optics,Choosingn=m=3 would yield a density of states propor-
namely, the imaginary pait,, describes the decay of a co- tional to (E—E.)Y? as in crystalline semiconductors. We
herent wave and the real pdrg gives the modification of cannot distinguish from computer simulations between these
the dispersion relation when one soles k?>+I'r(KE) (us-  two solutions but the main thrust of this paper would not be

ing atomic unitg. The relationship is altered. Let us now consider forms Br(kE), which would
be consistent with that “observed” from the computer

(KE) = i I’y (kE) 1) simulations’ Taking the valence band first, then the form

P 7 [E— k2T r(KE) 12+ T'2(KE)
. . L (k—k,)
and the electronic density of states is given by I'r(KE)=A, (E—E) . (A,>0), (5)
1 ©

g(E)= ﬁfo k?dkp(KE). (2 whereEU=k§, has the property required, namely, the slope

as a function ofk approaches infinity. The value &, is
If ', is finite then the density of states is finiteIlf is equal ~ approximatelykg, the modulus of the free-electron wave
to an infinitesimal¢ then p(kE) = §[E—k?®—T'r(KE)], and  vector. If one solveE=k?+T' then the form(4) is ob-
to obtain a zero density of states as in the gap then there muined. If we choose the form
be no roots tE=k?+I'g(kE). The numerical calculations

of Hickey et al! on a small model of-Si show how this ' (KE)=A [k—Kc(E)] A {k—[k.—a(E—E.)*]}
occurs and are illustrated in Figsial and Ib). Setting the RIKE)=Ac (E-E.) ' °¢ (E-E,) ’
average potential to be zerk? andk®+I'r(kE) are plotted (6)

for an energy(a) just below the band gap arit) in the band ) ) )

gap. The energy is shown as a horizontal line. Below thevhere Ec=kg, then one obtaing3) if aA.<1. If aA.<1
band gap the intersection is on a steep parkofI'r and  then the order ok andk, is reversed. The precise behavior is
leads to a low density of states. Within the band gap a solunot known but future refinements will not change the general
tion to E=k?+TI' is avoided by a singularity. When the arguments, which are based on a mixture of theoretical facts
spectral function is plottédnear the band edges a sharply and evidence from numerical calculations.

peaked spectral function is found with the peaks lying close Within the gap we require a self-energy that is singular.
to the modulus of the free-electron Fermi veckgr corre- ~ The simplest form to take is

sponding to arE(k) relationship with a vertical slope but

where the area under the spectral function goes to zero at the o ES 1

band edges. If R™ 16 K2—K3" (7)
E=Ec+Bc(ke—K)",  Bc>0, (k<k) (3 where E4 is the energy gap. If one now solves=k?

and +I'r(kR) for the real value of then there are two roots for

k? corresponding to
E=E,—B,(k,— K™ B,>0, (k<k,) (4)

with 1>n>0 and >m>0 and whereE. andE, denote the k2 +
conduction- and valence-band edges, then these lead to an 2 4

= (8

_E+kg +iE_g( L 4(E—kg)2)1’2
9
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FIG. 1. The behavior ok?+T's(kE) as a function ok (a) for g 10% | 3
an energy(E) just outside the gap, an®) for an energy within the o
gap. The horizontal line denotes the energy and the solid curve is
the free-electron forntk?).
103 I I
namely, thak? has imaginary parts within the gap just as in 15 2.0 . y 25 3.0
a crystalline semiconductor even thoufjh is vanishingly ) nergy(ev)
small.kg is the energy at the center of the gap and again is FIG. 2. Th tical absorotion function of ener 0
approximatelyk?. If we setE=k2+ (E,/2) then this estab- - £ 1€ Oplical absorption 8s & funciion of energy on a

linear-log plot:(a) unscaled data an@) scaled data for thin layers
and bulka-Si:H. The symbols denote points read from the original
data for the purpose of rescaling.

lishesk, andk. to be

E 1/2
kvz(kg— —9> 9) R .
4 When[E—V(r)] lies just in the conduction banB) be-
g comes
an
B
L Eg|2 i (ke+ VAW =[E-E.—V(N)]*¥, (12)
k.= k°+7 , (10 c

and when E—V(r)] lies in the valence ban@) becomes
becausé? must be real at the band edges. This then li@s

smoothly to(3) and (4). This is not quite consistant with ,33 2 oo 2

E,=k? andE.=k? but this is easily taken care of by making + 2Kk, (ky+ VOV =[E-E,~V(N]™V. (13
ko to be slightly energy dependent, tendingktoandk,, at ) )

the band edges. Setting V=0 yields (3), (4), and (8) for k~ky~k.~Kk, .

The next step in our argument is to recognize that if weChoosing the appropriate sign when taking square roots it
have a slowly varying potentiaV(r) and replacek? by  Should be noted that it is important to retain the plus and
—V2 we can construct the following Schiinger-type dif-  Minus signs in(11) so that decaying exponential solutions
ferential equations by replaciri by [E—V(r)] for values of ~ €an be obtained using spherical coordinates. We would wish
k close toko, k,, andk.. When[E—V(r)] lies within the to emphasme at this stage that the only uncertainty concerns
gap(8) becomegusing atomic units the precise values ah andn in (3) and(4) not the general

physical argument.

E—V(r)+k2 We now turn to the measured optical absorption
_V2xp:(—° a-Si:H/a-SiN, :H multilayers where, as usual, we will as-
2 sume that the band offset is sufficient so that the states in a

singlea-Si:H layer can be regarded as completely confined.
)\p_ (11)  Abeles and Tiedjéshowed that the optical absorption varied
with varying thickness of tha-Si:H layers from(8—40 A,

. 2
i|E_g L A[E—V(r)—kj]?
4 Ej
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5x10* \ . . ; confinement on, say, the conduction band would be to gen-
erate bands in a layer of thickneasn the z direction, such
= 4t G—oO Fitted data i that
£ m— Experimental data ) 2y 112
g =S L S (14
'§ 8 ¢ e 2ke| e T a '
§ ol wheren is an integer an#t?=kZ+kZ. Choosing a reasonable
2 value of 8., as will be discussed shortly, we find a negli-
o 1L i gible effect on the band density of states even for the small-
est values ofa~8 A, as the rescaled absorption coefficient
0 . . . would suggest.
1.20 1.40 1,60 1.80 2.00 220 We now turn to the problem of analyzing the optical ab-

Energy(eV) sorption at the band edge &Si:H. We achieve this by
assuming that the absorption is proportional to the joint den-
FIG. 3. The optical absorption as a function of energy on asity of states but we need an estimate of the matrix elements
linear-linear plot for the experimental and fitted datasesi:H. for optical transitions from the valence to the conduction
band, which are treated as a constant terraé®?Z, by
which could be construed as Stemming from variation in thq:onne”f1 Wherea3 is the volume per atom. We estimate this
gap due to confinement as in crystalline multilayers. Indeedat about 3 eV from the absorption edge simply by comparing
Abeles and Tiedje were able to fit their data using effectivehe experimental valdewith that obtained from the joint
masses for the valence and conduction bands but the valuggnsity of states as calculated by Holender and Mofgate.
used correspond to free-electron-like values. This has beenghtain the value 0B3P2,=20.6 a.u. We then takg,= 5,

long-standing problem but we will argue that at the bandypg fit the absorption at the band edge ugiees the other
edge ofa-Si:H it is only the states o&-Si:H that are absorb-  itting parameter. The results are shown in Fig. 3 on a linear-
ing the radiation becauseSiN:H has a much larger band jinear plot. The agreement is clearly excellent with
gap. Accordingly, the measured absorption coeﬁluentﬂczﬁ =0.23 a.u. and.=1.55 eV. This value oE.. should
should be scaled by a factor pfL1+L,)/L1]% whereL:  pe compared with a value of 1.77 eV, which is usually

andL, are the thickness of Si:H and SiN:H layers, respec-qyqted, but of course the precise value depends on how it is
tively. The reason for the square di(+L,)/L, is that the  extracted from the experimental data and the precise form for
absorption will be proportional to the volume fraction of the density of states at the band edge. The cubic form for the
states in the conduction and valence band. In Fig. 2 we shoyysorption coefficient at the edge results from the linear den-

the scaled and unscaled data plotted on a log-linear scalgjties of states in the conduction and valence bands.
and it can be seen that within the scatter resulting from trans-

ference of the original data there is no change in the gap with One of us(J.O) wishes to acknowledge the support of
thickness. If we return to Eq$3) and(4) then the effect of Kenyatta University, the ODA, and the British Council.
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